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ABSTRACT We report here that ORS1, a previously uncharacterized member of the NAC transcription factor family, con-

trols leaf senescence inArabidopsis thaliana. Overexpression ofORS1 accelerates senescence in transgenic plants, whereas

its inhibition delays it. Genes acting downstream of ORS1 were identified by global expression analysis using transgenic

plants producing dexamethasone-inducible ORS1–GR fusion protein. Of the 42 up-regulated genes, 30 (;70%) were pre-

viously shown to be up-regulated during age-dependent senescence. We also observed that 32 (;76%) of the ORS1-de-

pendent genes were induced by long-term (4 d), but not short-term (6 h) salinity stress (150 mM NaCl). Furthermore,

expression of 16 and 24 genes, respectively, was induced after 1 and 5 h of treatment with hydrogen peroxide (H2O2),

a reactive oxygen species known to accumulate during salinity stress. ORS1 itself was found to be rapidly and strongly

induced by H2O2 treatment in both leaves and roots. Using in vitro binding site selection, we determined the preferred

binding motif of ORS1 and found it to be present in half of the ORS1-dependent genes. ORS1 is a paralog of ORE1/

ANAC092/AtNAC2, a previously reported regulator of leaf senescence. Phylogenetic footprinting revealed evolutionary

conservation of the ORS1 and ORE1 promoter sequences in different Brassicaceae species, indicating strong positive se-

lection acting on both genes. We conclude that ORS1, similarly to ORE1, triggers expression of senescence-associated

genes through a regulatory network that may involve cross-talk with salt- and H2O2-dependent signaling pathways.
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INTRODUCTION

Leaf senescence is controlled by organ age and is triggered by

adverse environmental factors (e.g. Lutts et al., 1996; Pourtau

et al., 2004; Munns, 2005; Masclaux-Daubresse et al., 2007). Ad-

ditionally, plant growth regulators such as ethylene, salicylic

acid, jasmonic acid, auxin, abscisic acid, and cytokinins affect

senescence (Lim et al., 2007). Onset and progression of senes-

cence are accompanied by global changes in gene expression

(e.g. Gepstein et al., 2003; Andersson et al., 2004; Buchanan-

Wollaston et al., 2005; van der Graaff et al., 2006; Lim et al.,

2007; Balazadeh et al., 2008b). Genes up-regulated during se-

nescence are generally termed senescence-associated genes

(SAGs). Transcription factors (TFs) of the NAC (for NAM, ATAF1,

2, and CUC2) domain family represent an appreciable portion

of the senescence-regulated genes in many plant species in-

cluding crops and trees, suggesting an important role in the

control of senescence (e.g. Andersson et al., 2004; Guo

et al., 2004; Buchanan-Wollaston et al., 2005; Gregersen and

Holm, 2007; Balazadeh et al., 2008b).

In Arabidopsis thaliana, expression of more than 20 NAC TFs

increases during senescence (Buchanan-Wollaston et al., 2005;

Balazadeh et al., 2008b, 2010b). A regulatory role in develop-

mental senescence, however, has so far only been demonstrated

for few genes, including AtNAP (At1g69490) and ORESARA1

(ORE1; also called ANAC092 and AtNAC2; At5g39610). Both

genes trigger early senescence when overexpressed, while
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a functional block delays senescence (Guo and Gan, 2006; Kim

et al., 2009; Balazadeh et al., 2010a), constituting them as pos-

itive senescence regulators. As the downstream regulons con-

trolled by senescence-associated NAC TFs are poorly

understood, we recently performed microarray-based expres-

sion profiling using estradiol-inducible ORE1 overexpression

lines. We found that 78 (;46%) of the 170 genes up-regulated

upon ORE1 induction are known SAGs, suggesting the NAC fac-

tor exerts its senescence control function through control of

many known senescence-regulated genes (Balazadeh et al.,

2010a). Global expression profiling revealed that 36 of the 78

SAGs are induced by long-term (4-d) salt stress, a major pro-

moter of plant senescence, resembling the behavior of ORE1,

which itself is salt-responsive (He et al., 2005; Balazadeh

et al., 2010a, 2010b). Binding sites for ORE1 were found to

be present in 26 of the salt-regulated SAGs (Balazadeh et al.,

2010b). Additionally, we found that 14 of the 36 salt-triggered

SAG genes are induced by hydrogen peroxide (H2O2) treatment.

Of note, 15 senescence-associated NAC genes (senNACs), includ-

ing ORE1, were found to be H2O2-responive (Balazadeh et al.,

2010b). It thus appears that salt-triggered senescence at least in

part involves H2O2-mediated signaling through NAC TFs.

Senescence- and salt-dependent ORE1/ANAC092 expression

is controlled through transcriptional regulation, as demon-

strated by promoter–reporter gene fusions (Balazadeh et al.,

2010a); however, physiologically relevant upstream transcrip-

tion factors controllingORE1 expression during senescence are

unknown. ORE1 expression is under control of the ethylene

signaling pathway and is subject to regulation by miRNA164

(He et al., 2005; Kim et al., 2009).

To identify additional regulators of senescence, we screened T-

DNA insertion lines for NAC genes and found that ORS1 (ORE-

SARA1 SISTER1; At3g29035) positively controls leaf senescence.

In vitrobinding site selection identified DNA sequence motifs rec-

ognizedbyORS1transcriptionfactor.MembersoftheORS1down-

stream regulon were identified by expression profiling after

chemical induction of ORS1 overexpression. Finally, we demon-

strate evolutionary conservation ofORS1- andORE1-orthologous

promoters in other species of the Brassicaceae family.

RESULTS

ORS1 Defines a Novel Positive Senescence Regulator in

Arabidopsis

To disclose novel regulators of senescence, we screened avail-

able T-DNA insertion lines for NAC genes and found that a mu-

tant carrying a T-DNA in gene At3g29035 (GABI-Kat line

778C04) is late-senescent (see below). According to Ooka

et al. (2003), At3g29035 is a paralog to ORE1; thus, to indicate

its phylogenetic and functional relationship with ORE1, we

named it ORS1 for ORE1 SISTER1. Within their NAM domains,

ORE1 and ORS1 proteins share an overall amino acid identity

of 94%; sequence identity amounts to around 41% in the

C-terminal part of the two proteins. ORS1 and ORE1 share only

limited sequence similarity with AtNAP, namely ; 63% amino

acid identity within the NAM domain and below 23% in the

C-terminal region (not shown).

The ORS1 gene harbors three exons and encodes a protein

of 318 amino acids. The ors1-1 mutant carries the T-DNA in the

third exon of the NAC gene (Figure 1A). Absence of functional

ORS1 transcript in fully expanded leaves of homozygous ors1-1

plant was demonstrated by RT–PCR (Figure 1B). Phenotypic

analysis of the null mutant revealed delayed senescence in

comparison to the wild-type controls (Figure 1C), which irreg-

ularly was accompanied by a small delay (up to 5 d) in flower-

ing time, but no significant change of rosette leaf number

when grown under long-day conditions.

Sixty days after sowing, a significantly higher chlorophyll

content was observed in the five biggest rosette leaves of

the ors1-1 mutant (Figure 1D), and the percentage of green

leaves was approximately three-fold higher in the mutant than

the control (data not shown), reflecting a delay in senescence.

Accordingly, expression of the senescence marker gene SAG12

(Weaver et al., 1998) was approximately eight-fold higher in

wild-type than ors1-1 mutant plants (Figure 1E). Furthermore,

expression of another senescence-associated gene, SAG13, was

approximately two-fold higher in the wild-type, as revealed by

Affymetrix ATH1 microarray hybridization and qRT–PCR (not

shown). We generated a homozygous ors1-1/anac092-1 dou-

ble mutant but obtained no evidence for a significant further

delay in leaf senescence compared to the single-gene mutants

under our experimental conditions (not shown). This result

indicates that both NAC TFs target regulatory networks that

are both important for senescence control.

We tested ORS1 expression in leaves of early- and late-sen-

escent accessions of Arabidopsis (Balazadeh et al., 2008a), 30–

60 d after sowing. ORS1, like ORE1/ANAC092 (Balazadeh et al.,

2010a), was more strongly expressed in early-senescent acces-

sions Col-0 and Lip-0 than in late-senescent accession N13 (Fig-

ure 1F), indicating a positive correlation of ORS1 expression

level with the age-dependent senescence status in the differ-

ent accessions.

We next inhibited ORS1 by RNA interference (RNAi) con-

trolled by the CaMV 35S promoter; qRT–PCR revealed many

lines with almost undetectable ORS1 transcript (not shown).

No senescence was visible in leaves of RNAi lines 40 d after

sowing (DAS), in contrast to empty vector (EV) transformed

control plants (Figure 1G). Chlorophyll content in leaves no.

7 and 8 was significantly higher in ORS1 RNAi than in EV lines

at 40DAS and the number of fully viable leaves (without visible

marks of senescence) was bigger in RNAi than in control plants

(not shown). This observation was consistent with low SAG12

expression in RNAi lines (not shown).

During the course of more than 3 years, we regularly culti-

vated anac092-1 (Balazadeh et al., 2010a) and ors1-1 mutants

next to each other and normally found a stronger delay of se-

nescence in the anac092-1 mutant. However, infrequently, we

observed a more pronounced delay of senescence in the ors1-1

mutant, indicating that unknown environmental factors con-

tribute to determining the contribution of each gene to the
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senescence control network. We also noticed a stronger delay

of senescence in ORS1 and ORE1 RNAi lines, compared to their

respective T-DNA insertion mutants, indicating that the RNAi

constructs inhibited not only their cognate genes, but also

some other, sequence-related NAC genes.

ORS1 Overexpression Promotes Early Leaf Senescence

We next overexpressed ORS1 in transgenic Arabidopsis plants,

confirmed by Northern blot analysis (examples shown in Figure

2A) and qRT–PCR (not shown). Under long-day conditions,

35S:ORS1 lines developed senescence much earlier than

wild-type or EV control lines (Figure 2B). We determined

the chlorophyll content of the six first emerging leaves (i.e.

leaves no. 1–6) of 35S:ORS1 transformants at 35 DAS. As seen

in Figure 2C, chlorophyll content of the oldest rosette leaves

(leaves no. 1–4) was considerably lower in 35S:ORS1 overex-

pressor than EV lines. Chlorophyll content was only slightly re-

duced in leaf no. 5, and almost unchanged relative to control

in leaf no. 6, which, under our experimental conditions, was

the youngest leaf of the rosette. Thus, overexpression of

Figure 1. Delayed Senescence in ors1-1 Mutant and ORS1 RNAi Lines.

(A) T-DNA is inserted in exon III of ORS1.
(B) Absence of ORS1 transcript (arrow) in ors1-1 mutant plants, shown by RT–PCR with primers annealing to the start and stop regions of the
coding segment. Forward (F) and reverse (R) primer positions are indicated by arrows in (A). WT, wild-type (Col-0); M, molecular size marker.
(C) Ors1-1 mutant showing delayed senescence, 55 d after sowing (DAS) at long-day conditions and 120 DAS at short-day conditions.
(D) Chlorophyll content of the five biggest leaves from plants shown in (C).
(E) SAG12 expression in mutants and wild-type plants shown in (C) determined by qRT–PCR. Note that one cycle difference in the qRT–PCR
corresponds to a two-fold difference in gene expression.
(F) ORS1 expression in the five biggest leaves of early- (Lip-0 and Col-0) and late- (N13) senescent accessions at different days after sowing
(DAS), determined by qRT–PCR. The Y-axis indicates 40-DCt, where DCt is equal to Ct gene_of_interest – Ct reference_gene_UBQ10. Data are means of
three independent experiments 6 SD. Differences in expression levels are significant for all comparisons between N13 and Lip-0 or Col-0,
respectively (Student’s t-test, p , 0.05) with the following exception: 30 DAS, N13 vs. Col-0.
(G) Delayed senescence in ORS1 RNAi line, 40 DAS.
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ORS1 does not abolish chlorophyll accumulation in juvenile

leaves, whereas it stimulates a more rapid decline in chloro-

phyll content in older leaves, concomitant with a reduced

number of survived leaves at 35DAS (Figure 2D). Senescence

is typically accompanied by membrane disintegration and thus

ion leakage (e.g. Woo et al., 2001). Figure 2E shows that ion

leakage was low and similar in young leaves (leaves no. 5

and 6) of EV and ORS1 transgenic lines, whereas it was much

more pronounced in older leaves of overexpressors than con-

trols. As ORS1 overexpression did neither affect chlorophyll ac-

cumulation nor ion leakage in developing (young) leaves, it

appears that full execution of ORS1 function requires addi-

tional, yet unknown factors that are only present in mature

leaves. A similar phenomenon exists in ORE1 overexpression

plants (Balazadeh et al., 2010a). As a further indicator for leaf

senescence, we determined SAG12 expression, which was

strongly elevated (.30-fold) in shoots of 35S:ORS1 overexpres-

sion lines compared to controls (Figure 2F). We also observed

that dark-induced senescence developed faster in 35S:ORS1

overexpressors compared to control lines, whereas it was

Figure 2. ORS1 Overexpression Plants.

(A) Northern blot analysis of plants transformed with the 35S:ORS1 construct. Numbers indicate individual transformants. C, control (un-
transformed) plant. Blots were hybridized with 32P-labeled ORS1 cDNA probe.
(B) Early senescence in ORS1 overexpression lines at 35 DAS compared to an empty vector (EV) control plant.
(C) Chlorophyll content of the first six leaves of 35S:ORS1 plants in comparison to EV lines.
(D) Percentage of survived leaves.
(E) Ion leakage.
(F) SAG12 expression in 35S:ORS1 and EV lines, determined by qRT–PCR. Data in (C)–(F) were obtained from plants at 35 DAS; means 6 SD of
at least three replicates. Plants were grown under long-day conditions (16 h/8 h, light/dark).
(G) Chlorophyll content in rosette leaves of ors1-1, ORS1–RNAi, EV, and 35S:ORS1 lines. Leaves were detached from 5-week-old plants,
placed on moist filter paper in Petri dishes, and kept in the dark for 4 d. Means 6 SD of three replicates. Chlorophyll levels in ors1-1 versus
EV and 35S:ORS1 lines were significantly different (Student’s t-test, p , 0.05).
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delayed in theors1-1mutant (and RNAi lines, Figure 2G). Taken

together, ORS1 constitutes an important element of the cellu-

lar networks controlling developmental as well as dark-

induced senescence. Consistent with this conclusion is the fact

that ORS1 transcript abundance increased strongly (more than

eight-fold) under extended night conditions, similarly to

ORE1 (Usadel et al., 2008; GENEVESTIGATOR). Of note, we ob-

served that senescence was generally more pronounced in

35S-ANAC092 (Balazadeh et al., 2010a) than in 35S:ORS1 over-

expression lines (not shown), indicating a more prominent role

of ORE1 in senescence control, at least under standard green-

house growth conditions.

ORS1 Expression Pattern

To investigate ORS1 expression, we fused its ;1.5-kb-long 5#

upstream regulatory region to b-glucuronidase (GUS) reporter

gene and tested GUS activity in Arabidopsis plants trans-

formed with the PromORS1:GUS construct. Representative ex-

pression patterns are shown in Figure 3.

In young seedlings up to an age of ;10 d, strong GUS activ-

ity was observed in cotyledons and regularly in the tip regions

of very young leaves (Figure 3A(a) and 3A(b)), but not in

slightly further developed, green leaves (Figure 3A(b) and

3A(c)). Strong GUS activity was observed in older leaf parts

when senescence became apparent (Figure 3A(c)), in agree-

ment with elevated ORS1 (ANAC059) transcript abundance

in senescing leaves (Balazadeh et al., 2008b) and rosettes

(Buchanan-Wollaston et al., 2005; see GENEVESTIGATOR).

GUS activity was also detected in floral parts, with a prefer-

ence for old sepals, petals, old stamens, mature anthers, and

pollen grains, while immature floral tissue showed no GUS ac-

tivity (Figure 3A(d), 3A(e), and 3A(g), and data not shown).

Strictly localized GUS activity was observed at the floral organ

abscission zone of mature flowers (Figure 3A(e)). Maturation

of reproductive floral organs and abscission of floral or-

gans are considered to be senescence processes (Bleecker

and Patterson, 1997). ORS1 promoter-driven GUS activity

was also observed in roots (Figure 3A(f)).

We also analyzed the transcriptional regulation of ORS1 in

transgenic tobacco and observed significant GUS staining only

in older leaf parts (i.e. leaf tips), consistent with an age-depen-

dent regulation of ORS1 (Figure 3B(a)). Expression ofORS1was

also wound-inducible in PromORS1:GUS tobacco leaves (not

shown). GUS staining was virtually absent from young flowers

(Figure 3B(b)), but strong expression was detected in petals of

older (opened) flowers (Figure 3B(c)). Similarly, GUS activity

was detected in mature, but not immature anthers (Figure

3B(d)), and in roots (Figure 3B(e)).

Binding-Site Selection Defines a Consensus Target

Sequence of ORS1

As cis-elements recognized by ORS1 were not reported previ-

ously, we performed an in vitro binding site selection experi-

ment to discover sequence motifs preferred by ORS1 using the

CELD–transcription factor fusion method (Xue, 2002, 2005).

ORS1 was translationally fused to the catalytic domain of

a 6xHis-tagged cellulase D (CELD) from Neocallimastix patricai-

rum and incubated with biotin-labeled random-sequence oli-

gonucleotide probes. Oligonucleotides bound by the ORS1–

CELD fusion protein were recovered by means of affinity pu-

rification of the DNA–ORS1–CELD complex, and the catalytic

activity of CELD was used for quantification of the amount

of protein bound to the oligonucleotides (Xue, 2002, 2005).

Fifteen clones representing 13 unique sequences were

obtained and analyzed for binding activity. An alignment of

the target sequences and relative binding activities are shown

in Table 1. ORS1 binds to a bipartite DNA element of 17–18 bp

containing the consensus sequence [AG]CGT[AG](4-5n)[AG][C-

T]ACGCAA. The target site thus includes two core motifs,

RCGTR (motif 1) and RYACGCAA (motif 2; R = A or G; Y = C

or T), separated by a spacer of 4–5 bp. Nucleotide substitution

experiments performed on the basis of oligonucleotide 3 indi-

cated the relevance of some, but not all nucleotide positions

for efficient ORS1 binding (Table 1; oligonucleotides 3m1 to

3m4). We noticed a dramatic drop in ORS1 binding activity

upon reducing the distance between the two core motifs from

4 to 3 bp, or increasing it to 6 bp (oligonucleotides 3m5 and

3m7), whereas increasing it from 4 to 5 bp did not affect bind-

ing activity (oligonucleotide 3m6). Thus, ORS1 has highest af-

finity to target DNA when the two core motifs are spaced by 4

or 5 bp. The bipartite recognition site occurs in a number of

genes controlled by ORS1 in dexamethasone-inducible overex-

pression lines (see below).

The ORS1 Regulatory Network

To identify genes downstream of ORS1, we expressed it under

the control of a chemically (dexamethasone, DEX) inducible

system in Arabidopsis, and studied global transcriptome

changes using Affymetrix ATH1 microarrays 5 h after DEX

treatment. In the transgenic ORS1–DEX plants, ORS1 is genet-

ically fused to a glucocorticoid receptor (GR). As expression of

the chimeric gene is controlled by the CaMV 35S promoter, its

expression level remains constant before and after induction,

and DEX treatment induces the nuclear targeting of the fusion

protein (Lloyd et al., 1994). To filter out possible effects in-

duced by DEX application rather than overexpression of

ORS1, we performed the same experiment with ethanol-trea-

ted ORS1–DEX plants. To find downstream target genes of

ORS1, we chose 46-day-old plants when most leaves were ma-

ture, shortly before senescence became visible. ORS1–DEX

plants were sprayed with 30 lM DEX or 0.5% ethanol (con-

trols). RNA isolated from whole rosettes was subjected to ex-

pression profiling.

This experiment, performed in two biological replications,

yielded 42 up-regulated and 26 down-regulated transcripts

(considering absolute log2 <–1.58 and >1.58) (Table 2 and

Supplemental Table 1). Among the up-regulated genes, 30

transcripts (;70%) were previously shown to be up-regulated

during senescence (e.g. Guo et al., 2004; Buchanan-Wollaston
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et al., 2005; van der Graaff et al., 2006; Balazadeh et al., 2008b).

This result is in accordance with the model that ORS1 is a

senescence-regulatory transcription factor, although it ap-

pears to regulate fewer genes than ORE1/ANAC092. As previ-

ously reported, 170 genes were at least two-fold up-regulated

5 h after induction of ORE1 (Balazadeh et al., 2010a). Compar-

ing the two datasets revealed that only eight genes were com-

monly up-regulated (Table 2), indicating that the two NAC TFs

control gene sets that only partly overlap. This observation is in

accordance with the fact that ORE1 binds to the core binding

site of the ORS1 factor, but more flexibly tolerates single-

nucleotide mutations in the second motif of the NAC binding

site while basically retaining its binding activity (data not

shown). We also found that induction of ORS1 at the seedling

stage only affected few SAGs (not shown), indicating that ad-

ditional factors required for senescence-induced gene expres-

sion are missing in young tissues.

We selected 13 of the 42 up-regulated genes (Table 2) and

tested their DEX-dependent expression in a third biological

replicate by quantitative real-time PCR. DEX-triggered en-

hancement of gene expression was confirmed in all cases (Ta-

ble 2). Over-representation analysis using PageMan (Usadel

et al., 2006) revealed a significant enrichment of detoxification

(e.g. glutathione-S transferases, P-value: 2 3 10�6) and antiox-

idant genes (e.g. glutathione redoxins, P-value: 0.002) among

the up-regulated transcripts (not shown).

We next searched for the presence of the ORS1 binding sites

in the 1-kb upstream regions of DEX-responsible genes in

ORS1–DEX plants using the MGT(N7–8)ACGY core derived from

the ORS1 binding site selection and mutation studies. The core

sequence allows for at least 30% binding activity compared to

sequences primarily selected by the CELD assay and may thus

contribute to regulation by ORS1 in vivo. Of the 42 genes

whose expression was up-regulated upon ORS1 induction,

Figure 3. ORS1 Promoter-Driven GUS Expression.

(A) Arabidopsis. (a) GUS expression in 10-day-old seedling. (b) Leaves of a 25-day-old seedling. Note GUS staining in the leaf tip. (c) GUS
staining in young and old leaves from a soil-grown;5-week-old plant. (d) Immature flower. (e) Mature flower with GUS staining in stamens
and the floral abscission zone (arrow). (f) Roots. (g) Anther and mature silique.
(B) Tobacco. (a) Leaf with GUS staining in the tip region. (b) Immature flower. (c) Mature flower with GUS staining in petals. (d) Young (left)
and mature (right) stamens. (e) Root. Incubation time in GUS staining solution was less than 1 h in all cases.
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21 harbor at least one ORS1 binding site within their 1-kb pro-

moter (Supplemental Table 2).

Salt- and Hydrogen Peroxide-Dependent ORS1 Expression

We have previously shown that salt stress triggers the expres-

sion of many genes that are downstream of ORE1/ANAC092,

indicating that this transcription factor plays a role in salt-

induced senescence (Balazadeh et al., 2010a, 2010b). We there-

fore tested gene expression in shoots of 28-day-old

plants grown in hydroponic condition as described previously

(Balazadeh et al., 2010a). Salt stress (150 mM NaCl) was applied

to the growth medium for 6 h (short-term stress) and 4 d (long-

term stress), respectively. Expression profiling using Affymetrix

ATH1 arrays showed that 32 of the 42 DEX-dependent genes

(i.e. 76%) observed in ORS1–DEX plants were induced by

long-term, but not short-term salinity stress (Supplemental

Table 3).

Environmental stresses including desiccation and salinity

perturb cellular redox state and trigger accumulation of re-

active oxygen species (ROS) such as singlet oxygen, superox-

ide anion radical, hydroxyl radical and hydrogen peroxide

(H2O2) in plant cells (Miller et al., 2009). Several senes-

cence-regulated NAC genes are also induced by external ap-

plication of H2O2 or treatments that trigger the

accumulation of ROS, such as ozone and methyl viologen,

or 3-aminotriazole, which blocks catalase leading to a rise

in H2O2 level (e.g. Davletova et al., 2005; Gechev and Hille,

2005; Gadjev et al., 2006; Balazadeh et al., 2010b). We pre-

viously observed that ORS1 transcript abundance increased

approximately two-fold after 1 h H2O2 treatment, and ap-

proximately five-fold after 5 h, whereas ORE1 was not in-

duced after 1 h, and induced two-fold after 5 h

(Balazadeh et al., 2010b). Here, taking advantage of the Pro-

mORS1:GUS lines, we found a rapid and strong H2O2-

Table 1. Binding Site Selection.

Oligonucleotide ORS1-selected oligonucleotides Relative binding activity (%)

1 AACACACACATGACGTA ATAC ACACGCAACc 100 6 1.2

2 TCGATTGCGTA CACGT ACACGCAACCTACC 93 6 1.2

3 CGGGGTTACGTA CGGC ACACGCAACCGTGC 93 6 1.1

4 TCGAGTTGCGTG ACGG ACACGCAACCTACC 85 6 1.3

5 AAACGTA AACC ACACGCAATGTAGAGCCGC 80 6 0.7

6 TAGCGTA CGTTT ACACGCAAGCTACTTGTA 78 6 0.6

7 agcGTG CCTT ACACGCAACCGTTGCCGGTTCGA 75 6 0.3

8 ACCGGGTAACGTA TACA GCACGCAAACCTA 74 6 0.5

9 agcGTG TGGA GTACGCAATGTCATTGTATACCC 74 6 0.4

10 agcGTG TTGC ATACGCAACCTCGCACTGCTTAC 71 6 0.2

11 agcGTG TGGT ACACGCAACTGAGTGTGTGCCTG 65 6 0.6

12 agcGTG TGCC GTACGCAATCCAGTCCCTCCTCG 64 6 1.4

13 agcGTA CAGT TCACGCCACCGCACCCATCTCCA 52 6 1.1

Consensus RCGTR N(4-5)RYACGCAA

ANAC019, 55, 72 TCNNNNNNNACACGCATGT

TaNAC69 CGTR NNNNN YACG

Mutated oligonucleotides (substitutions)

3 CGGGGTTACGTA CGGC ACACGCAACCGTGC 100 6 0.7

3m1 CGGGGTTACGTA CGGC ACACACAACCGTGC 29 6 0.2

3m2 CGGGGTTAAGTA CGGC ACACGCAACCGTGC 52 6 0.5

3m3 CGGGGTTGCGTA CGGC ACACGCAACCGTGC 113 6 0.2

3m4 CGGGGTTACGTA CGGC ACACGTAACCGTGC 108 6 0.8

Mutated oligonucleotides (additions and deletions)

3m5 CGGGGTTACGTA GGC ACACGCAACCGTGC 4 6 0.1

3m6 CGGGGTTACGTACCGGC ACACGCAACCGTGC 109 6 0.2

3m7 CGGGGTTACGTACTCGGC ACACGCAACCGTGC 11 6 0.2

Sequence alignment of ORS1-selected oligonucleotides 1–13. Binding activity of ORS1 to oligonucleotide 1 was set to 100%. Values are means 6 SD
of three assays. Lower-case letters are from flanking primer sequences. Binding sites for ANAC019, 55 and 72 from Arabidopsis (Tran et al., 2004) as
well as for TaNAC69 from wheat (Xue, 2005) are indicated for comparison. Oligonucleotides 3m1, 2, 3, and 4 were derived from oligonucleotide 3 by
base substitution within the consensus regions. Oligonucleotides 3m5, 6, and 7 were derived from the same oligonucleotide by the deletion or
addition of nucleotides in the linker sequence (changed bases underlined). Binding activities for mutated oligonucleotides are given relative to that
of oligonucleotide 3.
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Table 2. ORS1-Dependent Up-Regulated Genes.

Affy ID AGI Code Annotation
ORS1–DEX ORS1–DEX
1st 2nd

245148_at AT2G45220* Pectinesterase family protein 1.68 2.74

245392_at AT4G15680 Glutaredoxin family protein 3.46 2.87

245393_at AT4G16260* Glycosyl hydrolase family 17 protein 2.01 2.06

245506_at AT4G15700 Glutaredoxin family protein 2.63 2.78

245976_at AT5G13080* WRKY75 (WRKY DNA-binding protein 75) 1.96 2.32

247327_at AT5G64120* Peroxidase, putative 1.87 2.54

247925_at AT5G57560* TCH4 (TOUCH 4); hydrolase, acting on glycosyl bonds 2.03 1.81

251293_at AT3G61930*# Unknown protein 1.67 1.82

252265_at AT3G49620 DIN11 (DARK INDUCIBLE 11); oxidoreductase 2.67 2.54

252367_at AT3G48360 BT2 (BTB and TAZ domain protein 2) 2.12 2.04

253161_at AT4G35770 SEN1 (DARK INDUCIBLE 1) 2.94 2.48

253915_at AT4G27280*# Calcium-binding EF hand family protein 2.54 1.63

254042_at AT4G25810* XTR6 (XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6) 2.08 2.74

254387_at AT4G21850* Methionine sulfoxide reductase domain-containing protein/SeIR domain-containing protein 2.57 2.30

254889_at AT4G11650* ATOSM34 (OSMOTIN 34) 2.66 2.49

255543_at AT4G01870* TolB protein-related 2.41 2.56

256012_at AT1G19250* FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE 1) 2.65 3.34

256252_at AT3G11340 UDP-glucoronosyl/UDP-glucosyl transferase family 3.40 3.50

256891_at AT3G19030* Similar to unknown protein (Arabidopsis thaliana) (TAIR:AT1G49500.1) 3.24 1.70

256933_at AT3G22600* Protease inhibitor/seed storage/lipid transfer protein (LTP) 2.11 1.83

257540_at AT3G21520* Similar to unknown protein (Arabidopsis thaliana) (TAIR:AT3G21550.1) 1.61 2.37

257774_at AT3G29250*# Oxidoreductase 2.25 2.82

258203_at AT3G13950* Similar to unknown protein (Arabidopsis thaliana) (TAIR:AT4G13266.1) 2.34 1.93

258957_at AT3G01420* ALPHA-DOX1 (ALPHA-DIOXYGENASE 1) 1.69 2.44

260225_at AT1G74590* ATGSTU10 (Arabidopsis thaliana Glutathione S-transferase (class tau) 10) 2.03 2.05

260405_at AT1G69930* ATGSTU11 (Arabidopsis thaliana Glutathione S-transferase (class tau) 11) 2.49 2.37

260522_x_at AT2G41730 Similar to unknown protein (Arabidopsis thaliana) (TAIR:AT5G24640.1) 2.43 1.93

260706_at AT1G32350* AOX1D (ALTERNATIVE OXIDASE 1D); alternative oxidase 2.46 3.47

261135_at AT1G19610* LCR78/PDF1.4 (low-molecular-weight cysteine-rich 78) 4.10 2.40

261763_at AT1G15520* ATPDR12/PDR12 (PLEIOTROPIC DRUG RESISTANCE 12) 3.21 3.70

261892_at AT1G80840* WRKY40 (WRKY DNA-binding protein 40) 2.26 2.74

262085_at AT1G56060 Similar to unknown protein (Arabidopsis thaliana) (TAIR:AT2G32190.1) 2.67 2.53

262399_at AT1G49500 Similar to unknown protein (Arabidopsis thaliana) (TAIR:AT3G19030.1) 3.26 1.78

263948_at AT2G35980* YLS9 (YELLOW-LEAF-SPECIFIC GENE 9) 3.70 4.05

264016_at AT2G21220 Auxin-responsive protein, putative 1.76 1.61

265658_at AT2G13810* ALD1 (AGD2-LIKE DEFENSE RESPONSE PROTEIN1) 2.63 2.24

266267_at AT2G29460* ATGSTU4 (GLUTATHIONE S-TRANSFERASE 22) 2.73 1.72

266270_at AT2G29470* ATGSTU3 (GLUTATHIONE S-TRANSFERASE 21) 1.90 3.42

266658_at AT2G25735 Unknown protein 2.50 1.95

267147_at AT2G38240* Oxidoreductase, 2OG-Fe(II) oxygenase family protein 2.48 2.33

267385_at AT2G44380 DC1 domain-containing protein 1.89 2.18

267567_at AT2G30770* CYP71A13 (cytochrome P450, family 71, subfamily A, polypeptide 13); oxygen binding 2.28 2.90

Numbers in the two right-most columns indicate expression values in two biological replicates, given as fold change on log2 basis (Dex treatment
compared to mock).
* Senescence-massociated genes. Genes tested by qRT–PCR for expression in the 3rd biological replicate are underlined. # Genes up-
regulated at least two-fold upon estradiol-mediated induction of ORE1/ANAC092 expression in ANAC092-IOE plants (Balazadeh et al.,
2010a). If a two-fold induction threshold is also considered for genes responding to ORS1 induction in ORS1–DEX plants (this report), five
more genes overlapped with the ANAC092-IOE dataset: At3g01830, At3g61190, At2g32680, At5g38710, and At5g39520.
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triggered induction in GUS signal already after 1h (Figure 4A

and 4B). Elevated GUS staining was observed in both roots

and leaves; however, a quicker and stronger response to

H2O2 was observed in roots (not shown). Next, we tested

the effect of H2O2 on a series of transgenic plants harboring

successive ORS1 promoter deletions fused to GUS (see below)

and observed significantly reduced H2O2-induced GUS stain-

ing in plants carrying –204 or –161 deletions (examples

shown in Figure 4A). Additionally, we quantitatively deter-

mined ORS1 promoter activity by 4-methylumbelliferyl-beta-

D-glucuronide (4-MUG) assay. As shown in Figure 4B, re-

porter gene activity in Arabidopsis seedlings was strongly

enhanced after 1 h of H2O2 treatment (10 mM) in plants car-

rying the full-length ORS1 promoter. High H2O2-dependent

promoter activity was retained in deletions down to –230 bp,

but was lost upon further deletion (Figure 4B), indicating

that regulatory elements controlling H2O2-triggered expres-

sion of ORS1 are located within the proximal 230-bp pro-

moter region, but are absent in the –204-bp deletion. We

also tested H2O2-dependent ORE1/ANAC092 transcriptional

activation using PromANAC092:GUS seedlings (Balazadeh

et al., 2010a). In contrast to ORS1, enhanced GUS staining

was only observed after 5 h in PromANAC092:GUS lines; no dif-

ference in staining was observed after 1 h of H2O2 treatment,

indicating a more delayed response, consistent with expres-

sion changes of the two genes as determined by qRT–PCR

(see above).

We then analyzed H2O2-dependent expression of ORS1

downstream genes and found that 24 of those were signifi-

cantly induced after 5 h H2O2 treatment; 16 were already in-

duced after 1 h incubation time (Supplemental Table 3). We

conclude that ORS1, similar to ORE1, triggers expression of

SAGs; part of this regulatory network appears to involve

cross-talk with salt- and H2O2-dependent signaling pathways.

ORS1 and ORE1 Are Concertedly Evolving Genes with an

Ancient Evolutionary Origin

Phylogenetic analysis of NAC domains indicated that ORS1 and

ORE1 transcription factors are closely related members of the

NAC family in Arabidopsis (Ooka et al., 2003). To test evolu-

tionary conservation of ORS1 and ORE1 genes, we screened

for orthologous genes in selected species of the Brassicaceae

family. Orthologous versus paralogous relationships of homol-

ogous genes can be difficult to discriminate, especially in the

case of multigene families. Thus, to avoid potential mis-assign-

ments, we cloned upstream regulatory regions, instead of the

coding regions, of ORS1 and ORE1 homologous, and included

the 5’ untranslated regions as specific, highly conserved

marker segments. The Arabidopsis ORS1 and ORE1 1-kb up-

stream regions (counted from the translation initiation codon)

were run as BLAST baits against sequences deposited in the

Brassica oleracea Genome Project Database (www.tigr.org/

tdb/e2k1/bog1/). Brassica and Arabidopsis separated approxi-

mately 12–24 million years ago (Yang et al., 1999). A PCR-based

approach was used to clone ORS1 and ORE1 5’ upstream

regions from Arabidopsis arenosa, Brassica oleracea cv. Capi-

tata alba, Capsella rubella, and Raphanus sativus cv. Nancy, re-

spectively. Phylogenetic footprinting analysis using ConSite

(Sandelin et al., 2004) indicated significant conservation of

ORS1 and ORE1 5# upstream regions for all species. The

ORE1 promoter from A. thaliana exhibited highest sequence

similarity, defined through an automatically calculated value

(Sandelin et al., 2004), with the A. arenosa ORE1 promoter,

whereas the lowest conservation level was observed when

compared with the B. oleracea ortholog (Supplemental Figure

1A). Notably, promoter conservation across species was above

90% in all pair-wise comparisons of ORE1 orthologs, suggest-

ing that most segments of the promoter are under positive se-

lection. The overall conservation level was significantly lower

for the ORS1 ortholog, ranging from 72 to 94% (Supplemental

Figure 1B), suggesting a lower selective pressure for conserva-

tion of theORS1 promoter when compared with theORE1 pro-

moter. Nonetheless, the observed conservation level is

significant and presumably reflects a regulatory role of this re-

gion. Moreover, significant conservation (70%) was also ob-

served between promoters of ORS1 and ORE1 in

Arabidopsis. These findings were supported by further analy-

ses using the FootPrinter motif discovery tool (Blanchette and

Tompa, 2003). FootPrinter allows the identification of highly

conserved non-coding sequences (CNSs) in promoters of

orthologous subsets with a higher resolution than ConSite.

Testing various parameters (minimal motif sizes; maximum

Figure 4. H2O2-Dependent ORS1 Expression.

GUS activity in 2-week-old Arabidopsis seedlings transformed with
PromORS1:GUS and PromORS1del: GUS constructs, treated for 1 h with
10 mM H2O2 compared to control.
(A) Histochemical assay. GUS staining was performed for 30 min.
(B) 4-Methylumbelliferyl-beta-D-glucuronide (4-MUG) assay. MUG
activity is given as relative value, where the activity of H2O2-treated
plants was compared to control condition.
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number of mutations accepted within the motifs) supported

the conclusion that ORE1 promoters were more strongly con-

served throughout evolution than ORS1 promoters. In ORE1

promoters, FootPrinter revealed a set of six conserved non-

coding sequences that were 21 (most distal CNS), 10, 20, 16,

23, and 17 (most proximal CNS) nucleotides long, respectively

(Figure 5A). Using identical screening parameters, only four

non-mutated motifs of at least 10 nucleotides (i.e. 20, 11,

12, and 10 nucleotides, respectively) were identified in ORS1

promoters (Figure 5C). With less stringent conditions, Foot-

Printer discovered more and longer conserved non-coding

sequences in both,ORS1 andORE1orthologous sets. Neverthe-

less, the overall conservation level of ORE1 orthologs was sig-

nificantly higher than of ORS1 orthologs (Figure 5B and 5D,

respectively). We scanned the conserved promoter fragments

for the presence of known cis-acting regulatory elements, us-

ing information from the PLACE database. This analysis

revealed six and seven previously described regulatory ele-

ments, respectively, in the phylogenetic footprints of ORS1

and ORE1 orthologs (Figure 5A and 5C). The majority of these

elements were shown to have a function in stress, wound, or

salicylic acid responses, which is consistent with the observa-

tion that expression of ORS1 and ORE1 genes is controlled

by these factors (GENEVESTIGATOR).

Identification of a Promoter Region Required for

Senescence-Associated Gene Expression

To define regulatory element(s) that control senescence-

associated expression, we performed ORS1 promoter dele-

tions. Arabidopsis plants transformed with the PromORS1del:

GUS constructs were analyzed for senescence-dependent ex-

pression; deletions to positions –1000, –585, –400, and –230

bp did not impair ORS1 expression in senescent leaves. We

then tested for the presence of highly conserved non-

coding sequences (CNSs) in the 230-bp promoter region, tak-

ing advantage of the sequences ofORS1 orthologs (see above).

A sequence logo created using the WebLogo software (http://

weblogo.berkeley.edu/) demonstrated sequence conservation

within this part of the ORS1 promoter (Figure 6A). Gaps in the

logo result from insertions/deletions in the aligned promoter

sequences. Additional 5’ deletions of the ORS1 promoter

were generated to test the functions of the non-coding

sequences. Thus, –204 and –161 promoter constructs were

made to delete CNS1 and CNS2, respectively, and transformed

into Arabidopsis. Senescence-specific expression of ORS1 was

significantly reduced in the –204 deletion. This was also the

case for expression in flowers, especially in the abscission zone,

while no significant changes in the expression were observed

in roots (Figure 6B). The same expression pattern was observed

for the –161 deletion (not shown). These results indicate that

the promoter region between –230 and –204 contains cis-

element(s) that are required for senescence-specific expression

of ORS1. Currently, however, the upstream transcription fac-

tors binding to this element to regulate ORS1 transcription re-

main unknown.

Figure 5. Conserved Non-Coding Sequences in Promoters of ORS1
and ORE1 Orthologs.

Promoter sequences were obtained fromArabidopsis thaliana, Ara-
bidopsis arenosa, Capsella rubella, Raphanus sativus, and Brassica
oleracea.
(A) ORE1 orthologous promoters. Minimal motif size (MMS): 10;
maximal number of mutations accepted within the motifs (MNM):
0. Fully conserved sequences in ORE1 promoters are shown above
the alignments. Boxes shown in color indicate known cis-acting
elements (.4 bp long) deposited in the PLACE database. 1, W
box, wounding, salicylic acid and stress response element; 2,
GT-1 binding site, light-regulated transcription; 3, WRKY binding
site; 4, heat shock response element; 5, HD-Zip protein binding
element.
(B) ORE1 orthologous promoters. MMS: 12; MNM: 2.
(C) ORS1 orthologous promoters. MMS: 10; MNM: 0. Fully con-
served sequences in ORS1 promoters are indicated. Boxes shown
in color indicate known cis-acting elements (.4 bp long). 6, ASF-
1 binding site, transcriptional activation by auxin and/or salicylic
acid; 7, ATMYB2 binding site, water stress response element; 8
and 3, WRKY binding site; 9, W box, wounding, salicylic acid and
stress response element; 10, cis-elements for ethylene and circadian
regulation.
(D) ORS1 orthologous promoters. MMS: 12; MNM: 2.
Gray lines connect identical conserved non-coding sequences;
blocks shown in green highlight coding sequences (CDS) of ORS1
and ORE1 orthologs.
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DISCUSSION

Senescence is a multifaceted process that integrates develop-

mental programs with environmental inputs controlled by

intricate gene regulatory networks involving an appreciable

number of transcriptional and other regulators. Although

many NAC TFs have previously been observed to undergo

senescence-dependent changes in gene expression (e.g.

Buchanan-Wollaston et al., 2005; Gregersen and Holm,

2007; Balazadeh et al., 2008b, 2010b), only a few have firmly

been proven to control senescence, including the Arabidop-

sis genes AtNAP and ORE1 (Guo and Gan, 2006; Kim et al.,

2009; Balazadeh et al., 2010a). Based on our experimental

data presented here, we conclude that ORS1 constitutes

a further positive regulator of senescence that adds to the

functions of ORE1 and AtNAP. According to our phylogenetic

promoter analysis, ORS1 and ORE1 genes originated through

an early duplication event, most likely already in the ances-

tor of the Brassicaceae family. Although the promoters of

both genes diverged considerably during subsequent evolu-

tion, various conserved non-coding sequences were

retained, indicating their functional relevance and that both

genes are important for the control of leaf senescence not

only in Arabidopsis thaliana, but also in other species of

the Brassicaceae family.

Downstream targets have previously only been reported for

ORE1 (Balazadeh et al., 2010a). Here, we discovered genes that

rapidly respond to a change ORS1 nuclear localization, in-

duced by dexamethasone ORS1–DEX plants. Notably, the ma-

jority (;70%) of the ORS1 up-regulated genes were previously

reported to be induced during senescence (e.g. Guo et al.,

2004; Buchanan-Wollaston et al., 2005; van der Graaff et al.,

2006; Balazadeh et al., 2008b). This observation supports the

model that ORS1 is a novel senescence-regulatory transcrip-

tion factor, although it may regulate fewer genes during se-

nescence than ORE1/ANAC092 (Balazadeh et al., 2010a).

Unraveling the gene regulatory networks controlled by TFs

benefits from the identification of cis-regulatory elements to

which they can bind. To advance our understanding of the

downstream regulon of ORS1, we determined its preferred

binding site by in vitro selection against random-sequence

double-stranded oligonucleotides. The preferred ORS1 bind-

ing site, constituted of the two core motifs RCGTR (motif 1)

and RYACGCAA (motif 2; R = A or G; Y = C or T), separated

by a spacer of 4–5 bp, bears similarity with the core binding

motif identified for some other NAC transcription factors. Tran

Figure 6. Deletion of Conserved Non-Coding Sequences in the ORS1 Promoter.

(A) Representation of highly conserved sequences in the proximal part of the ORS1 promoter using WebLogo software (http://weblogo.-
berkeley.edu/).
(B)ORS1-204 promoter-driven GUS expression. Note the almost complete absence of expression in senescent leaves and the abscission zone
of mature flowers (encircled). GUS activity in senescent leaves is still driven by the –230-bp promoter deletion harboring CNS1 (shown on the
left) and the flower abscission zone (not shown).
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et al. (2004) determined TCnnnnnnnACACG (n representing any

nucleotide) as the minimal, and CACG as the core DNA sequence

recognized by the three homologous drought-responsive

NAC factors ANAC019, 55, and 72. Olsen et al. (2005) described

[TA][TG]nCGT[GA] and T[TAG][GA]CGT[GA][TCA][TAG] as

binding sites for ANAC019 and ORE1/ANAC092, respectively;

both sequences contain the core binding site CGT[GA]. Xue

(2005) reported the 23-bp-long element [AG]G[AT]nnCG-

T[AG]nnnnn[CT]ACGT[AC]A[CT][CT] as consensus sequence

recognized by wheat NAC transcription factor TaNAC69.

As ORS1 and ORE1 share 94% sequence identity within their

DNA-binding NAM domain, it is possible that both proteins

recognize similar cis-elements. Indeed, motif 1 of the ORS1 tar-

get sequence (RCGTR) is identical to the central part of the

known ORE1 binding site (Olsen et al., 2005). However, as

the sequence of the proposed motif 2 of the ORE1 binding site

is not known at present, a final conclusion with respect to its

binding site preference cannot be drawn at this stage.

Onset and progression of senescence are affected by envi-

ronmental factors such as nitrogen limitation, darkness, exces-

sive light, drought, salinity, or wounding (e.g. Lutts et al., 1996;

Buchanan-Wollaston et al., 2005; Munns, 2005; Albacete et al.,

2009). In Arabidopsis, a significant proportion of the senes-

cence-regulated TFs, namely at least 52 of the 185 genes, is also

affected by environmental stress, particularly by salinity (Bala-

zadeh et al., 2008). Several senescence-controlling NAC genes,

including ORE1, AtNAP, and ORS1, are also affected by salinity

(He et al., 2005; Balazadeh et al., 2008b this report), suggesting

that NAC TFs play a prominent role in salt stress-induced plant

senescence.

Nitrogen (N) limitation is another factor that triggers early

senescence in many plant species (e.g. Smart, 1994; Diaz et al.,

2006; Agüera et al., 2010). Recently, Bi et al. (2007) analyzed

global gene expression patterns in Arabidopsis plants grown

for extended periods (3 weeks) under N-sufficient (3 mM ni-

trate) as well as moderate (1 mM nitrate) or severe (0.3 mM

nitrate) N-limiting conditions. Biomass accumulation at mod-

erate N limitation was reduced to ;80% in comparison to

3 mM nitrate condition and chlorophyll content remained al-

most unaffected (;5% reduction). Under severe N limitation,

biomass accumulation was further reduced to ;35% of that of

control plants grown under N-sufficient conditions; chloro-

phyll content was reduced by ;30% of the control level. All

three senescence-regulatory NAC TFs, namely ORS1, ORE1,

and AtNAP, were found to be up-regulated under severe

but not moderate chronic N-limitation stress (see Additional

Files 2 and 3 of Bi et al., 2007), indicating that all three NAC

genes control senescence not only under optimal (N-suffi-

cient), but also under severe N-limiting conditions.

While all three NAC genes respond to chronic N limitation,

differences in response to environmental stresses, abiotic and

biotic, exist. Analysis of public data (GENEVESTIGATOR)

revealed that ORE1 is strongly induced by inoculation with

conidiospores of the fungal pathogen Botrytis cinerea (more

than 10-fold after 48 h), or avirulent and virulent strains of

the bacterial pathogen Pseudomonas syringae (more than

20-fold after 24 h). Notably, however, ORS1 remained largely

unaffected by both pathogenic treatments (less than two-fold

induction). Another clear difference is the induction time

course of both genes after H2O2 treatment. Whereas ORS1 ex-

pression is rapidly induced by H2O2 treatment (within 1 h),

ORE1 only responded after 5 h of treatment. These differences

in H2O2-dependent gene expression were observed at both the

transcript level (Balazadeh et al., 2010b) and in promoter–

reporter gene fusions (this report), indicating transcriptional

control by upstream TF(s).

Although ORS1, ORE1, and AtNAP all regulate senescence,

direct upstream TFs controlling their expression have not been

reported until today. However, as senescence is a finely tuned

process, and modulated by many hormonal and environmen-

tal inputs, it is probably fair to assume that multiple TFs, and

potentially also global epigenetic programming (Ay et al.,

2009), control their expression. For ORS1, our promoter dele-

tion analysis demonstrated that a proximal promoter region

harbors cis-elements relevant for senescence- and H2O2-

dependent gene expression (Figures 4 and 6). Further studies

will be needed to precisely define which of the evolutionary

conserved non-coding sequences are indeed functional and

which TFs bind to them.

In summary, our findings reported here suggest a concerted

evolution of ORE1 and ORS1 and underscore the essential role

of NAC transcription factors for the control of leaf senescence

in Brassicaceae, includingArabidopsis thaliana. In the future, it

will be important to unravel the yet largely unknown cross-talk

of the upstream signaling pathways that control the expres-

sion of these transcription factors in the control of plant senes-

cence and the interconnectivity of the downstream gene

regulatory networks they govern.

METHODS

General

Standard molecular techniques were performed as described

(Sambrook et al., 2001; Skirycz et al., 2006). Oligonucleotide

sequences and AGI codes are given in Supplemental Table 4.

For computational analyses, the online tools of GENEVESTIGA-

TOR (www.genevestigator.com; Zimmermann et al., 2004), eFP

browser (www.bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi; Winter

et al., 2007) and the Plant Transcription Factor Database (http://

plntfdb.bio.uni-potsdam.de/v3.0/; Pérez-Rodrı́guez et al., 2010)

were used.

Plants

Seeds of Arabidopsis thaliana (L.) Heynh. accessions Col-0, Lip-

0, and N13 were obtained from the Arabidopsis thaliana Re-

source Centre for Genomics (INRA, France; http://dbsgap.

versailles.inra.fr/publiclines/). The ors1-1 T-DNA insertion line

was obtained from the GABI-Kat collection (id. 778C04). The

ors1-1/anac092-1 double mutant was obtained by crossing
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the single-gene mutants. Seedlings were grown in soil (Ein-

heitserde GS90; Gebrüder Patzer, Sinntal-Jossa, Germany) in

a climate chamber with an 8-h day length provided by fluores-

cent light at 100 lmol m�2 s�1 and a day/night temperature of

20/16�C and a relative humidity (RH) of 60/75%. For growth

under long-day conditions, 2-week-old seedlings where then

transferred to a growth chamber with a 16-h day (80 or 120

lmol m�2 s�1) and a day/night temperature of 22/16�C and

60/75% RH. For growth under short-day conditions, the light

period was reduced to 8 h. Growth in hydroponic culture, sa-

linity treatment, and sample preparation were performed as

described using stage 1 plants (28 d old) (Balazadeh et al.,

2010a).

Constructs

PromORS1:GUS fusions: genomics fragments of ;1500, 1000,

585, 400, 230, 204, and 163bp upstream of the ORS1 transla-

tion initiation codon were PCR amplified using primers ORS1:

GUS–fwd and ORS1:GUS–rev, inserted into vector pCR2.1–

TOPO (Invitrogen, Karlsruhe, Germany) and then fused via

BamHI and NcoI sites to the Staphylococcus sp. b-glucuroni-

dase (GUS) reporter gene in vector pCAMBIA1305.1–Hygrom-

ycin (CAMBIA, Canberra, Australia). 35S:ORS1: ORS1 open

reading frame was amplified by PCR from Arabidopsis Col-

0 leaf cDNA and inserted into pUni/V5-His–TOPO (Invitrogen).

The cDNA was cloned via added PmeI/PacI sites into a modified

pGreen0229-35S plant transformation vector (Skirycz et al.,

2006). ORS1–RNAi: a ;200-bp-long ORS1-specific DNA frag-

ment encompassing the 3’ part of the coding region and part

of the 3’-UTR was amplified by PCR using primers ORS1–fwd

and ORS1–rev, inserted into pENTR/D–TOPO vector (Invitro-

gen) and finally cloned into pJAWOHL8–RNAi vector (kindly

provided by Imre Somssich, MPI for Plant Breeding, Cologne,

Germany) using GATEWAY cloning. ORS1–DEX: ORS1 cDNA,

amplified from leaf cDNA with primers IOE–ORS1–fwd and

IOE–ORS1–rev, was inserted into pCR2.1–TOPO and then

cloned via XbaI and BamHI sites into d143 (Pbi-GR) vector

(Lloyd et al., 1994). ORS1–CELD: ORS1 cDNA, PCR-amplified

from leaf cDNA with primers ORS1–CELD–fwd and ORS1–

CELD–rev, was inserted into pCR2.1–TOPO and then cloned

via NheI and BamHI sites into plasmid pTacLCELD6XHis (Xue,

2005) to create an ORS1–CELD in-frame fusion construct, pTa-

cORS1LCELD6XHis. All PCR-amplified DNA fragments were

checked by sequencing. Agrobacterium tumefaciens strains

GV3101 (pMP90) and GV2260 were used for Arabidopsis thali-

ana (Col-0) and Nicotiana tabacum L. cv. Samsun NN transfor-

mations, respectively. The ORS1–RNAi construct was

transformed into Arabidopsis using Agrobacterium strain

GV3101RK (pMP90).

Expression Profiling by qRT–PCR

Total RNA extraction, cDNA synthesis, and qRT–PCR were per-

formed as described (Caldana et al., 2007; Balazadeh et al.,

2008b, 2010a).

DNA Binding Site Selection

Binding site selection was performed using the CELD system

(Xue, 2005) with pTacORS1LCELD6XHis construct, employing

biotin-labeled double-stranded oligonucleotide pools Bio-

RS-Oligo 1 and Bio-RS-Oligo 3 containing 30-nt random

sequences (Supplemental Table 4). ORS1-selected oligonucleo-

tides were cloned and sequenced. The DNA-binding activity of

ORS1–CELD protein was measured using methylumbelliferyl

b-D-cellobioside (MUC) as substrate (Xue, 2002). DNA-binding

assays with a biotin-labeled single-stranded oligonucleotide or

a biotin-labeled double-stranded oligonucleotide without

a target binding site were used as controls.

Microarray Experiments

Nuclear targeting of ORS1 was induced in ORS1–DEX plants by

spraying 46-day-old plants with 30 lM dexamethasone or con-

trol solution (0.5% ethanol) and harvesting after 5 h. For gene

expression analyses of the ors1-1mutant, plants were grown in

soil and fully expanded leaf number 11 was harvested 38 d af-

ter sowing (DAS). Expression data were submitted to the NCBI

Gene Expression Omnibus (GEO) repository (www.ncbi.nlm.

nih.gov/geo/) under accession number GSE22836. Expression

data were analyzed as described (Balazadeh et al., 2010a).

Groups were assigned according to the similarity of expression

patterns and classified into functional categories using Page-

Man (Usadel et al., 2006).

Phylogenetic Footprinting

Arabidopsis thaliana cv. Col-0, Arabidopsis arenosa, Brassica

oleracea cv. Capitata alba, Capsella rubella, and Raphanus sat-

ivus cv. Nancy were used (seeds kindly provided by Robert Has-

terok and Adam Rostanski, University of Silesia, Katowice,

Poland, and Heike Küchmeister, University of Potsdam, Ger-

many) to clone the 5# proximal parts of ORS1 and ORE1 ortho-

logs. The 5# proximal parts of ORS1 and ORE1 orthologs from

the species indicated were amplified by PCR: 95�C for 2 min;

40 cycles of 95�C for 45 s, 55�C for 30 s, 72�C for 2 min; 72�C
for 5 min. The forward primers (ANAC059F, ANAC092F) were

complementary to conserved non-coding sequences of ORS1

and ORE1 promoters. The reverse primer (ANAC059/092R)

annealed to a conserved region downstream of the transla-

tional start codon of both genes. PCR products were purified

and sequenced. The sequences obtained were trimmed at

the primer binding sites and subjected to comparative analy-

ses. Pair-wise alignments of promoter sequences were per-

formed using ConSite (Sandelin et al., 2004), employing a

50-nucleotide sliding window. The significance of the results

obtained was tested by generating random sets of unrelated

sequences analyzed with ConSite. This allowed establishing

threshold levels of promoter conservation values. The mean

background level of ‘promoter conservation’ in the case of

random sequences was 48%. All results of promoter conserva-

tion in this study were statistically significant and ranged from

70 to 98%. Detailed analysis of motif conservation across all
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promoters was performed using FootPrinter (Blanchette and

Tompa, 2003). Different parameters of minimal motif sizes

(MMS) and maximum number of mutations allowed within

the motifs (MNM) were tested, including MMS/MNM parame-

ters of 11/2, 12/2, and 10/0. We used the PLACE database (Higo

et al., 1999) to search for known cis-acting elements in the fully

conserved sequences of ORS1 and ORE1 orthologs. Prior to

promoter annotation, all elements <4 bp were filtered out.

GenBank accession numbers of promoter sequences are given

in Supplemental Table 4.

Other Methods

Histochemical GUS assays was performed as described (Plesch

et al., 2001). Fluorometric GUS assays were performed using 4-

methyl umbelliferyl b-D-glucuronide (4-MUG; Sigma-Aldrich,

Deisenhofen, Germany) as substrate (Jefferson, 1987). Chloro-

phyll content and ion leakage were determined as described

(Balazadeh et al., 2010a). For H2O2 treatment, 2-week-old

seedlings were incubated for 1 or 5 h in liquid MS medium con-

taining 10 mM H2O2.

SUPPLEMENTARY DATA

Supplementary Data are available at Molecular Plant Online.
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Albacete, A., Martı́nez-Andújar, C., Ghanem, M.E., Acosta, M., Sán-

chez-Bravo, J., Asins, M.J., Cuartero, J., Lutts, S., Dodd, I.C., and
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